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ION DIFFUSION AT INTERFACES IN HOT PLASMAS*
D. B. Boercker, K. Warren and G. Haggin

University of California, Lawrence Livermore National Laboratory

Livermore, California 94550

Absgtract

There are many laboratory applications in which it is im-
portant to know how fast two hot, ionized materials mix
across an initially sharp interface. The speed of this
process is requlated by the interdiffusion coefficient for
the species involved. In a previous work, a theoretical
method for calculating the interdiffusion coefficient in a
Binary Ionic Mixture (classical ions in a uniform, neutral-
izing background) was described and found to give excellent
agreement with Molecular Dynamics estimates. The purpose
of this report is to show how these results may be applied
to a model of the plasma interface, including electric
field effects, to give a good description of the mixing
across it.



Introduction

In Ref. 1, the ions in a binary plasma mixture were modeled as an
effective two-component system of classical ions moving in a uniform,
neutralizing background of electrons. This model is referred to as the Binary
Ionic Mixture. In a very similar model, the electrons are allowed to respond
to the ions so that the effective ion-ion interaction is a Coulomb potential

screened by the electron Debye length le = (kBTI4 ezne)llz.

A possible difficulty with both models is that they do not explicitly
account for the electric field effects due to the presence of the electrons.
As is well known, from the theory of ambipolar diffusion, such fields can
cause significant enhancement of ion diffusion.2 It should be noted,
however, that traditional ambipolar diffusion occurs in very slightly ionized
plasmas in which the diffusion process is dominated by collisions with
neutrals. In the plasma of interest here, there are no neutrals and the
electron density is very high. As a result, the electrons may be assumed to
be in (quasi) equilibrium with the relatively slowly developing ion
distribution, and since Ke ~ 10 Angstroms the plasma may be considered
to be neutral over hydrodynamic scale lengths (microns). Therefore, one might
expect the effects of the ambipolar field to be somewhat different in dense

plasmas. We will begin our investigation of this question by reviewing the

principal results of Ref. 1.

The diffusion coefficient, D, in a binary mixture linearly relates the

diffusion current to the gradient of the mass concentration.
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In the above m, is the mass of a particle of species "i", n, is the number

density of that species, 3 is the mass averaged (center-of-mass) velocity
field, p is the total mass density, and xi = mini/p is the mass concentration
of "i”. The time and position dependence of all these functions has been
suppressed. It was shown in Ref. 1 that in a BIM, the diffusion coefficient

may be written as
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where z1e and zze are the charges of the ions, the number concentration of
species "i" is ¢, = ni/(n1+n2). u, 18 the reduced mass of the

ions, and A is a generalization of the Coulomb logarithm which remains valid

. 1
even in very dense plasmas.

The function scc(k) is the concentration structure factor, defined in

terms of partial structure factors by,
S (k) = e e (c,8,. (k) + e.5..(k) - 2 (e.e)/? s, (%) (3)
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The factor, F, is defined by

F = clczlscc(k=0) (4)
When either concentration vanishes F=1, and for all intermediate
concentrations F>1, so it represents an enhancement of the diffusion

predicted by Do' alone. For future reference, we note that in a screened

BIM, the Debye-Hiickel limit of F is

2
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where <A> = c1A1 + °2A2' Usually, this factor is not large, but
it can be quite significant if one charge is much greater than the other.

In the next section, we will demonstrate the connection between the
factor, F, and the ambipolar field by starting with the usual Boltzmann theory
of diffusion in a three-component system (two ion species plus electrons).

The result will be to show that under the conditions of local neutrality and
equilibrium for the electrons, the ambipolar fields enhanice the ion diffusion
by precisely the factor in Eq. (5). While strictly valid only in the low



density limit, this argument indicates that it is reasonable to model the ions
as an effective two-component system with the ambipolar effects implicitly

contained in the enhancement factor.

Diffusion in Multicomponent Systems and the Ambipolar Field

The generalization of Eq. (1) to a three-component system in which there

are no temperature dgradients is,4
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where the Dij's are the multicomponent diffusion constants, (Dii =0), n=

n, +n, + n3, and

1t
n mn

% =1 S B« —t1 - 7

4 = n (anj kT ry) + onk T (jZanFJ ve) (7

The forces in Eq. (7) are due to the ambipolar field, and the pressure, p, has

been assumed to be given by the ideal gas law. If one assumes mechanical

stability for the system, then

= 8
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and Eq. (5) reduces to,
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where E is the electric field.

If we choose the label "3" to represent the electrons and assume them.to

be in local equilibrium, then
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and d3 vanishes. As a result the diffusion current for ion species "1" is

given by only the single term,

2
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From local neutrality, and Eq. (8), it follows that,
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Hence, we obtain,
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Since the electron contribution to the mass density is negligible, we relate
the gradient of n, to that of X through
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and we obtain
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It remains only to connect the multicomponent diffusion constant, D12
to the binary diffusion constant in Eq. (2). Once again exploiting the

smallness of the electron mass we obta:‘m.4
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where Ac is the Coulomb logarithm. Comparing with Eq. (2) we see that,

1 2
D12 = D° (18)
So, we obtain
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The important point to make here is that the enhancement factor appearing in
Eq. (19) is identical to that in Eq. (5). Thus modeling the true
three-component system of electrons and ions as an effective two-component

system of screened ions is legitimate provided the enhancement factor is

included.

Numerical Results

The general problem of diffusion is greatly simplified under conditions,
such as those considered here, in which the total number density is a
constant.4 In this case the number averaged velocity, :, can be shown to have
no divergence. By adding the continuity equations for each species, we obtain,

an

- c(nw) =-—n (VoW =0 (20)
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If one assumes that 3 is also irrotational, then ; must be independent of the

spatial coordinates. To make use of this fact we write the continuity

equation for ion species "1" as,
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Since charge neutrality requires that the electron velocity be given by,
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we obtain
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Once again neglecting electron mass effects, we can write Eqg. (14) in the form
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where the enhancement factor is included in D. Substituting Egs. (20,21) into

Eg. (18) leads to,

an
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(25)

&>
which for w = 0 is just Fick's law.4

>
We have written a code that solves Eq. (25), with w = 0, using the

implicit differencing scheme described in Ref. 5. The diffusion coefficient

is calculated from Eq. (2) with A evaluated from the theory in Ref. 1, and

read into the code in tabular form. The enhancement factor is estimated at

each point from Eg. (5).

Figure 1 shows results for silicon and strontium at 1 keV in planar

geometry. The interface was initially sharp at x = 0, and after 5 ns, it



appears to be about 2 microns thick. The thinner lines indicate the diffusion
predicted with A replaced by the estimate A » As = Max [1..Ac].
The spreading of the interface in this case is much less, because the value of

A calculated from Ref. 1 is typically about 0.2.

In Fig. 2, we solve Eq. (25) in spherical geometry. The initial
conditions are designed to simulate a micron diameter bubble of Sr in a Si
background. We see that after about 5 ns, the bubble has significantly

evaporated.

Summary

We have demonstrated that if the ions in a dense plasma are modelled as
an effective binary mixture, the effects of the ambipolar field are implicitly

contained in the enhancement factor,

€% <+ <>
F=5 (k=0) _ 2 (25
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where scc is the concentration correlation function. A small computer code
has been written that solves the diffusion equation using estimates of the
effective Coulomb logarithm from the theory described in Ref. 1. Typical
results from that code in both planar and spherical geometry have been

presented for mixtures of Si and Sr.
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FIGURE CAPTIONS

FIG. 1 Planar Si-Sr interface shown at a) t = 0 and b) t = 5 nsecs. The
thinner lines in b) represent diffusion calculated with a

Spitzer-like theory.

FIG. 2 Spherical Si-Sr interface shown at a) t = 0, b) t = 2 nsecs. and ¢)

t = 5 nsecs.



11

DENSITIES g/cec

—
o
'
-
-
21131314813

time= 0. nsecs. temp= 1.000+00keV

[ - on ot

N~

IIIIIIIIll'lllllllll'lIIIIIIIIIIIIIIIIII’II[IIIllll [N

-2.

Illllllllllllllllllllllllllllllllrlllll

-1. 0. 1.
MICRONS

2.

Fig. la



12

DENSITIES g/ce

(=]

timea 65.000:00ns0cs. temp= 1.00e+00keV

IllIlIllL'llllllIIlllllIIlIlIllllllllllIIILIllllllllllllllllllll
-
~

MICRONS

TOTAL

181+14

Sr.360

Fig. 1b



13

DENSITIES g/cc

[ ]

timew 0. nsecs. tempa 1.000:00keV

lllllllIllllllIIlllIIlIlLIIIIIILIIIlIlIIIIlIlIIlllIIIIIlllll 11 00l

. -
LI LB LI LI
l IllllllllllllllllllllllllllllllIIIIll

4 .8 1.2 1.8 2.0
MICRONS



14

DENSITIES g/ce

l_llllLIIlIIIIlIIlIl'll_lIlLlII'Illll_llllllllLlllll‘llll!lllll_lllll_l

MICRONS

time= 2.000+00ns0¢cs. temp= 1.000:00keV
TOTAL
/”’
P d - .
I'd
R
L 181+14
’
r'd
'~ ’/
~,
\,\ ,/ temim—
><.
JUCIERN 8r+36
\o
\.
\-
\-
\-
\.
\
\l
\,
\0
N,
N,
\0
~,
.
~
r-1--r..-|--...-----|--r.}:$'7"?1‘rﬂ-rﬂ-r1-rr-|-|—|-1-|-|-rn—|—‘
.4 .8 1.2 1.8 2.0

Fig. 2b



E

15
DENSITIES g/ce

-]

times 5.000+00ns0¢cs. tempa= 1.000+00keV

TOTAL

-——-—-—— ‘ s|‘14

Sr+36

IlllllllllIllllllIll'lllllIllll llllllll'llllll

n

-

q=r==, ~

E .~.~'§.\

- '\'N
— .,

- ~,

- \_\'

- ~,

- \'\'

. S

- '..'~-..
;-rT1ﬂrrrT1ﬂFrr1ﬂrrrT1ﬂ-rT1ﬂ-rrT1;:;;%;FF?ﬁﬁFFTTﬂ—rrTTWHPrrTW-
0 4 .8 1.2 1.8 2.0

MICRONS

Fig. 2c



